Questions on Oscillations MS

1. Data for speaker and equation

Equation for shm: $x = A \cos \omega t$

A amplitude = 1.0 mm or $1.0 \times 10^{-3} \text{ m}$

$$\omega = 2\pi f = 6.28 \times 10^2 \text{ (rad s}^{-1}\text{)} - \text{no unit penalty for } \omega \text{ (1)}$$

2

Calculations

(i) $A = A \omega^2$

=
$$1.0 \times 10^{-3}$$
 m × $(6.28 \times 10^{2}$ rad s⁻¹)² = 394 m s⁻²(1)

(ii) $v = A \omega (1)$

=
$$1.0 \times 10^{-3}$$
 m $\times 6.28 \times 10^{2}$ rad s⁻¹ = 0.63 m s⁻¹ (1)

3

Acceleration - time graph

Two cycles of sinusoidally shaped graph (1)

Period = 10 m s (1)

Amplitude =
$$394 \text{ m s}^{-2}$$
 [e.c.f from (i)] (1)

3

Explanation

Resonance (stated or implied by explanation) (1)

Increased amplitude at resonant frequency (1)

2

[10]

2. Phenomenon of resonance in the context outlined etc

Any five from:

- spheres can oscillate
- resonance when forcing frequency = natural frequency
- sound provides forcing frequency
- low frequency due to mass/density of lead spheres

At resonance, there is:

- large amplitude of oscillation (of spheres)
- maximum energy transfer to spheres
- energy transfer to thermal in the rubber
- minimum energy transfer to neighbours

[5]

5

3. Energy:

Potential energy = $mgh = 40 \times 10 \times 0.3 = 120 \text{ J}$ (1)

Kinetic energy as child hits rubber pillow is about the same value (120 J) (1)

$$mv^2 = 2 \times 120$$
 gives $v = 2.5 \text{ m s}^{-1}$ (1)

Kinetic energy transferred to air in pillow, gets warm (1)

Use of 3kT/2 (1)

Oscillations:

Oscillations because to and fro motion about a point (1)

	Damped oscillations (1) $F = kx$ to $400 = k$ 0.2 gives $k = 2000 \text{ N m}^{-1}$ (1) $T = 2\sqrt{k/m}$ gives about 6 s (1)		
	Idea that oscillations are not simple harmonic (1)	Max 7	[7]
4.	<u>Material</u>		
	e.g. porous material / made up of small fibres	1	
	Explanation		
	Any 1 point from the following:		
	• inelastic collisions between air molecules and fibres/materials		
	• fibres/materials absorb energy from the sound		
	fibres/materials deform plastically rather than transmitting vibrations	Max 1	
	Physics of sound reduction		
	Any 4 from:		
	Microphone is used to detect sound and feed to electronic device		
	Signal treated to produce output identical in frequency		
	• but in antiphase with original OR inverted		
	This output fed to loudspeaker		
	Interferes destructively with original sound	Max 4	
	Resonance		
	Sound vibrations (forcing vibrator) have same frequency as another vibrator's natural frequency (1)		
	increasing amplitude/energy of other vibrator's vibrations (1)	2	
	<u>Process</u>		
	Damping	1	[9]

Mulberry School for Girls 2